

四与非门触发器 CD4093

概述

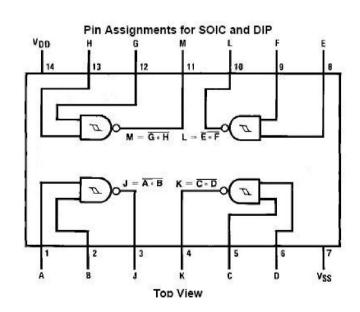
CD4093 是由四个施密特触发器电路组成,每个电路均为在两输入端具有施密特触发功能的 2 输入与非门,每个门在信号的上升、下降沿的不同点开、关,上升电压 (V_P) 和下降电压 (V_N) 之差定义为滞后电压 (ΔV_T)

所有输出端具有对称的灌拉电流能力,符合B系列输出驱动标准

主要特点:

- ☆ 供电电源范围宽: 3V~15V
- ☆ 每个输入端无需外加器件,都有一个施密特触发器
- ☆ 抗干扰能力强
- ☆ 对称的灌拉电流能力
- ☆上升沿下降沿时间无限制
- ☆B系列输出驱动标准

应用范围:


波形和脉冲整形

单稳态多频振荡器

高环境噪声系统

非稳态多谐振荡器

管脚排列图:

CD4093 引脚功能:

А	数据输入端	Е	数据输入端	J	数据输出端
В	数据输入端	F	数据输入端	K	数据输出端
С	数据输入端	G	数据输入端	L	数据输出端
D	数据输入端	Н	数据输入端	М	数据输出端
VDD	正电源	VSS	地	-	-

极限参数

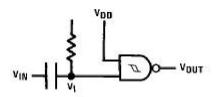
DC Supply Voltage 直流供电电压 (VDD)	-0.5 to +18 VDC				
Input Voltage 输入电压 (VIN)	-0.5 to VDD +0.5 VDC				
Storage Temperature Range 储存温度范围 (TS)	-65℃ to +150℃				
Power Dissipation 功耗 (PD)					
Dual-In-Line 普通双列封装	700 mW				
Small Outline 小外形封装	500 mW				
Lead Temperature 焊接温度(TL)					
Soldering, 10 seconds) (焊接 10 秒)	260℃				

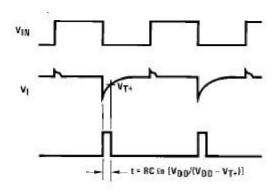
推荐工作条件

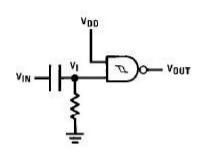
DC Supply Voltage 直流供电电压 (VDD)	3 to 15 VDC		
Input Voltage 输入电压 (VIN)	0 to VDD VDC		
Operating Temperature Range 工作温度范围(TA)	0°C to +70°C		

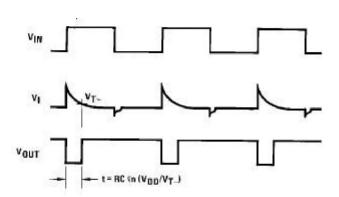
直流电气特性

符号	参数	条件	+25℃			单位
10 7			最小	典型	最大	平位.
		VDD = 5V			1.0	
IDD	静态电流	VDD = 10V			2.0	μΑ
		VDD = 15V			4.0	
		$VIN = VDD$, $ IO < 1\mu A$				
V/OI	输出低电平	VDD = 5V		0	0.05	
VOL	电压	VDD = 10V		0	0.05	V
		VDD = 15V		0	0.05	
VOH	输出高电平	VIN = VSS, IO < 1µA				
	电压	VDD = 5V	4.95	5		V
		VDD = 10V	9.95	10		

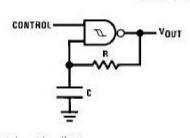

		VDD = 15V	14.95	15				
VT-	负向阈值电 压(任何输 入)	IO < 1µA						
		VDD=5V, VO =4.5V	1.5	1.7	2.25			
V 1		VDD=10V, VO = 9V	3.0	3.7	4.5	V		
		VDD=15V,VO=13.5V	4.5	5.6	6.75			
	正向阈值电	$ IO < 1\mu A$						
VT+	压(任何输	VDD = 5V, VO = 0.5V	2.75	3.4	3.5			
) (江1.1.1.11)	VDD = 10V, VO = 1V	5.5	6.5	7.0	V		
		VDD = 15V, VO = 1.5V	8.25	9.4	10.5			
	滞后(VT+ - VT-)(任何 输入)	VDD = 5V	0.5	1.7	2.0			
VH		VDD = 10V	1.0	2.8	4.0	V		
		VDD = 15V	1.5	3.8	6.0			
	输出低电平 电流	VIN = VDD						
IOL		VDD=5V,VO =0.4V	0.44	0.88				
102		VDD=10V,VO=0.5V	1.1	2.25		mA		
		VDD=15V,VO =1.5V	3.0	8.8				
	输出高电平 电流	VIN = VSS						
IOH		VDD=5V, VO =4.6V	0.44	-0.88				
		VDD =10V,VO=9.5V	-1.1	-2.25		mA		
		VDD=15V,VO=13.5V	-3.0	-8.8				
IIN	输入电流	VDD=15V, VIN = 0V		-10 ⁻⁵	-0.3	μΑ		

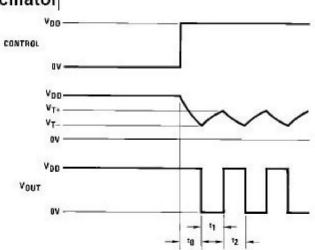

交流电气特性


符号	参数	Conditions 条件	最小	典型	最大	单位
tPHL tPLH	Propagation Delay Time 传递延迟时间	VDD = 5V		300	450	ns
		VDD = 10V		120	210	
		VDD = 15V		80	160	
tTHL tTLH	Transition Time 过渡时间	VDD = 5V		90	145	
		VDD = 10V		50	75	ns
		VDD = 15V		40	60	
CIN	Input Capacitance 输入电容	(Any Input)		5.0	7.5	pF
CPD	Power Dissipation Capacitance 耗散电容	(Per Gate)		24		pF



典型应用电路:





$$\begin{split} & \text{Assume } t_1 + t_2 >\!\!> t_{\text{PHL}} + t_{\text{PLH}} \text{ then:} \\ & t_0 = \text{RC } \ell \text{n } [V_{\text{DD}} / V_{\text{T}} -] \\ & t_1 = \text{RC } \ell \text{n } [(V_{\text{DD}} - V_{\text{T}} -) / (V_{\text{DD}} - V_{\text{T}} +))] \\ & t_2 = \text{RC } \ell \text{n } [V_{\text{T}} - V_{\text{T}} -] \end{split}$$

$$f = \frac{1}{t_1 + t_2} = \frac{1}{\text{RC } \ell \, n \, \frac{(V_T^+) \, (V_{DD} - V_T^-)}{(V_T^-) (V_{DD} - V_T^+)}}$$

